skip to main content


Search for: All records

Creators/Authors contains: "Deban, Stephen M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Upside-down jellyfish, genusCassiopea(Péron and Lesueur, 1809), are found in shallow coastal habitats in tropical and subtropical regions circumglobally. These animals have previously been demonstrated to produce flow both in the water column as a feeding current, and in the interstitial porewater, where they liberate porewater at rates averaging 2.46 mL h−1. Since porewater inCassiopeahabitat can be nutrient-rich, this is a potential source of nutrient enrichment in these ecosystems. This study experimentally determines that porewater release byCassiopeasp. jellyfish is due to suction pumping, and not the Bernoulli effect. This suggests porewater release is directly coupled to bell pulsation rate, and unlike vertical jet flux, should be unaffected by population density. In addition, we show that bell pulsation rate is positively correlated with temperature, and negatively correlated with animal size. As such, we would predict an increase in the release of nutrient-rich porewater during the warm summer months. Furthermore, we show that, at our field site in Lido Key, Florida, at the northernmost limit ofCassiopearange, population densities decline during the winter, increasing seasonal differences in porewater release.

     
    more » « less
  2. null (Ed.)
    Synopsis Animals clinging to natural surfaces have to generate attachment across a range of surface roughnesses in both dry and wet conditions. Plethodontid salamanders can be aquatic, semi-aquatic, terrestrial, arboreal, troglodytic, saxicolous, and fossorial and therefore may need to climb on and over rocks, tree trunks, plant leaves, and stems, as well as move through soil and water. Sixteen species of salamanders were tested to determine the effects of substrate roughness and wetness on maximum cling angle. Substrate roughness had a significant effect on maximum cling angle, an effect that varied among species. Substrates of intermediate roughness (asperity size 100–350 µm) resulted in the poorest attachment performance for all species. Small species performed best on smooth substrates, while large species showed significant improvement on the roughest substrates (asperity size 1000–4000 µm), possibly switching from mucus adhesion on a smooth substrate to an interlocking attachment on rough substrates. Water, in the form of a misted substrate coating and a flowing stream, decreased cling performance in salamanders on smooth substrates. However, small salamanders significantly increased maximum cling angle on wetted substrates of intermediate roughness, compared with the dry condition. Study of cling performance and its relationship to surface properties may cast light onto how this group of salamanders has radiated into the most speciose family of salamanders that occupies diverse habitats across an enormous geographical range. 
    more » « less
  3. null (Ed.)
    Abstract Suction feeding has evolved independently in two highly disparate animal and plant systems, aquatic vertebrates and carnivorous bladderworts. We review the suction performance of animal and plant suction feeders to explore biomechanical performance limits for aquatic feeders based on morphology and kinematics, in the context of current knowledge of suction feeding. While vertebrates have the greatest diversity and size range of suction feeders, bladderworts are the smallest and fastest known suction feeders. Body size has profound effects on aquatic organismal function, including suction feeding, particularly in the intermediate flow regime that tiny organisms can experience. A minority of tiny organisms suction feed, consistent with model predictions that generating effective suction flow is less energetically efficient and also requires more flow-rate specific power at small size. Although the speed of suction flows generally increases with body and gape size, some specialized tiny plant and animal predators generate suction flows greater than those of suction feeders 100 times larger. Bladderworts generate rapid flow via high-energy and high-power elastic recoil and suction feed for nutrients (relying on photosynthesis for energy). Small animals may be limited by available muscle energy and power, although mouth protrusion can offset the performance cost of not generating high suction pressure. We hypothesize that both the high energetic costs and high power requirements of generating rapid suction flow shape the biomechanics of small suction feeders, and that plants and animals have arrived at different solutions due in part to their different energy budgets. 
    more » « less
  4. The evolution of ballistic tongue projection in plethodontid salamanders—a high-performance and thermally robust musculoskeletal system—is ideal for examining how the components required for extreme performance in animal movement are assembled in evolution. Our comparative data on whole-organism performance measured across a range of temperatures and the musculoskeletal morphology of the tongue apparatus were examined in a phylogenetic framework and combined with data on muscle contractile physiology and neural control. Our analysis reveals that relatively minor evolutionary changes in morphology and neural control have transformed a muscle-powered system with modest performance and high thermal sensitivity into a spring-powered system with extreme performance and functional robustness in the face of evolutionarily conserved muscle contractile physiology. Furthermore, these changes have occurred in parallel in both major clades of this largest family of salamanders. We also find that high-performance tongue projection that exceeds available muscle power and thermal robustness of performance coevolve, both being emergent properties of the same elastic-recoil mechanism. Among the taxa examined, we find muscle-powered and fully fledged elastic systems with enormous performance differences, but no intermediate forms, suggesting that incipient elastic mechanisms do not persist in evolutionary time. A growing body of data from other elastic systems suggests that similar coevolution of traits may be found in other ectothermic animals with high performance, particularly those for which thermoregulation is challenging or ecologically costly.

     
    more » « less
  5. Abstract

    Elastically powered ballistic movements, such as tongue projection, are common in nature, likely due to benefits such as increased acceleration and distance of movement, and decreased thermal sensitivity imparted by elastic mechanisms. Within Plethodontidae, both muscle‐powered and elastically powered ballistic tongue projection occur. Thus, we examine how elastically powered ballistic tongue projection morphology has evolved from muscle powered projection at the level of the projector muscles (m. subarcualis rectus [SAR]). We find that two main SAR morphologies have evolved within Plethodontidae. The first SAR morphology is conducive to elastically powered ballistic projection. This ballistic SAR morphology has evolved multiple, independent times within Plethodontidae, and results from the correlated evolution of several traits including increased collagen aponeuroses, larger SAR muscles, and the loss of inner myofibers attaching directly to the tongue skeleton. While the independent evolution of ballistic SAR morphology has arrived at a similar anatomical design, other tongue structures such as tongue attachment and skeleton folding type varies among species with a ballistic SAR morphology. The second morphology is conducive to muscle‐powered projection and is similar to morphology found in an outgroup, Salamandridae. The SAR of these species have inner myofibers that attach to the tongue skeleton, limiting projection distance, coupled with reduced collagen aponeuroses present in relatively small projector muscles. This SAR morphology has likely been retained from ancestors or may be related to feeding ecology. Overall, a ballistic SAR morphology has evolved repeatedly and independently due to the correlated evolution of several SAR traits, including the loss of inner myofibers, which is likely a defining feature of ballistic projection.

     
    more » « less